Price of Connectivity for the vertex cover problem and the dominating set problem: conjectures and investigation of critical graphs
نویسنده
چکیده
The vertex cover problem and the dominating set problem are two well-known problems in graph theory. Their goal is to find the minimum size of a vertex subset satisfying some properties. Both hold a connected version, which imposes that the vertex subset must induce a connected component. To study the interdependence between the connected version and the original version of a problem, the Price of Connectivity (PoC) was introduced by Cardinal and Levy [8, 14] as the ratio between invariants from the connected version and the original version of the problem. Camby, Cardinal, Fiorini and Schaudt [5] for the vertex cover problem, Camby and Schaudt [7] for the dominating set problem characterized some classes of PoC-Near-Perfect graphs, hereditary classes of graphs in which the Price of Connectivity is bounded by a fixed constant. Moreover, only for the vertex cover problem, Camby & al. [5] introduced the notion of critical graphs, graphs that can appear in the list of forbidden induced subgraphs characterization. By definition, the Price of Connectivity of a critical graph is strictly greater than that of any proper induced subgraph. In this paper, we prove that for the vertex cover problem, every critical graph is either isomorphic to a cycle on 5 vertices or bipartite. To go further in the previous studies, we also present conjectures on PoC-Near-Perfect graphs and critical graphs with the help of the computer software GraphsInGraphs [4]. Moreover, for the dominating set problem, we investigate critical trees and we show that every minimum dominating set of a critical graph is independent. keywords: vertex cover, connected vertex cover, dominating set, connected dominating set, forbidden induced subgraph, extremal graph.
منابع مشابه
Complexity and approximation ratio of semitotal domination in graphs
A set $S subseteq V(G)$ is a semitotal dominating set of a graph $G$ if it is a dominating set of $G$ andevery vertex in $S$ is within distance 2 of another vertex of $S$. Thesemitotal domination number $gamma_{t2}(G)$ is the minimumcardinality of a semitotal dominating set of $G$.We show that the semitotal domination problem isAPX-complete for bounded-degree graphs, and the semitotal dominatio...
متن کاملStrength of strongest dominating sets in fuzzy graphs
A set S of vertices in a graph G=(V,E) is a dominating set ofG if every vertex of V-S is adjacent to some vertex of S.For an integer k≥1, a set S of vertices is a k-step dominating set if any vertex of $G$ is at distance k from somevertex of S. In this paper, using membership values of vertices and edges in fuzzy graphs, we introduce the concepts of strength of strongestdominating set as well a...
متن کاملKernelization Hardness of Connectivity Problems in d-Degenerate Graphs
A graph is d-degenerate if its every subgraph contains a vertex of degree at most d. For instance, planar graphs are 5-degenerate. Inspired by recent work by Philip, Raman and Sikdar, who have shown the existence of a polynomial kernel for DOMINATING SET in d-degenerate graphs, we investigate kernelization hardness of problems that include connectivity requirement in this class of graphs. Our m...
متن کاملDouble Roman domination and domatic numbers of graphs
A double Roman dominating function on a graph $G$ with vertex set $V(G)$ is defined in cite{bhh} as a function$f:V(G)rightarrow{0,1,2,3}$ having the property that if $f(v)=0$, then the vertex $v$ must have at least twoneighbors assigned 2 under $f$ or one neighbor $w$ with $f(w)=3$, and if $f(v)=1$, then the vertex $v$ must haveat least one neighbor $u$ with $f(u)ge 2$. The weight of a double R...
متن کاملk-TUPLE DOMATIC IN GRAPHS
For every positive integer k, a set S of vertices in a graph G = (V;E) is a k- tuple dominating set of G if every vertex of V -S is adjacent to at least k vertices and every vertex of S is adjacent to at least k - 1 vertices in S. The minimum cardinality of a k-tuple dominating set of G is the k-tuple domination number of G. When k = 1, a k-tuple domination number is the well-studied domination...
متن کامل